Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations.

نویسندگان

  • R C Wade
  • R R Gabdoulline
  • S K Lüdemann
  • V Lounnas
چکیده

To bind at an enzyme's active site, a ligand must diffuse or be transported to the enzyme's surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and beta-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as "ionic tethering." We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme's surroundings even when the substrate is nonpolar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Resolution Approach for Interactively Locating Functionally Linked Ion Binding Sites by Steering Small Molecules into Electrostatic Potential Maps Using a Haptic Device

Metal ions drive important parts of biology, yet it remains experimentally challenging to locate their binding sites. Here we present an innovative computational approach. We use interactive steering of charged ions or small molecules in an electrostatic potential map in order to identify potential binding sites. The user interacts with a haptic device and experiences tactile feedback related t...

متن کامل

Effects of electrostatic interactions on ligand dissociation kinetics.

We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. T...

متن کامل

Electrostatic Steering Accelerates C3d:CR2 Association

Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this s...

متن کامل

Molecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin

Studying the interaction of pharmaceutical ionic liquids with human serum albumin (HSA) can help investigating whether or not ionic liquid formation can enhance pharmacological profile of the discrete ingredients. In this respect, in the present work, the interactions of Benzalkonium Ibuprofenate, as a well-known active pharmaceutical ionic liquid, Benzalkonium Chloride, and also Sodium Ibuprof...

متن کامل

Potentiometric Study on the Interaction of Hexadecyl Ttimethyl Ammonium Bromide (HTAB) with Urease Enzyme

In this research, the interaction of hexadecyl trimahyl ammonium bromide (HTAB) with enzyme ureasehas been investigated comprehensively at different experimental conditions such as ionic strength, proteinconcentration using ion selective membrane electrode of surfactants. The obtained binding isotherms frompotentiometnc studies have been analyzed by different theories such as Wyman binding pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 11  شماره 

صفحات  -

تاریخ انتشار 1998